Courant Algebroids from Categorified Symplectic Geometry
نویسنده
چکیده
In categorified symplectic geometry, one studies the categorified algebraic and geometric structures that naturally arise on manifolds equipped with a closed nondegenerate (n + 1)-form. The case relevant to classical string theory is when n = 2 and is called ‘2-plectic geometry’. Just as the Poisson bracket makes the smooth functions on a symplectic manifold into a Lie algebra, there is a Lie 2-algebra of observables associated to any 2-plectic manifold. String theory, closed 3-forms and Lie 2-algebras also play important roles in the theory of Courant algebroids. Courant algebroids are vector bundles which generalize the structures found in tangent bundles and quadratic Lie algebras. It is known that a particular kind of Courant algebroid (called an exact Courant algebroid) naturally arises in string theory, and that such an algebroid is classified up to isomorphism by a closed 3-form on the base space, which then induces a Lie 2-algebra structure on the space of global sections. In this paper we begin to establish precise connections between 2-plectic manifolds and Courant algebroids. We prove that any manifold M equipped with a 2-plectic form ω gives an exact Courant algebroid Eω over M with Ševera class [ω], and we construct an embedding of the Lie 2-algebra of observables into the Lie 2-algebra of sections of Eω. We then show that this embedding identifies the observables as particular infinitesimal symmetries of Eω which preserve the 2-plectic structure on M .
منابع مشابه
Courant Algebroids from Categorified Symplectic Geometry: Draft Version
In categorified symplectic geometry, one studies the categorified algebraic and geometric structures that naturally arise on manifolds equipped with a closed non-degenerate n + 1-form. The case relevant to classical string theory is when n = 2 and is called ‘2-plectic geometry’. Just as the Poisson bracket makes the smooth functions on a symplectic manifold into a Lie algebra, there is a Lie 2-...
متن کاملPoisson Geometry with a 3-form Background
We study a modification of Poisson geometry by a closed 3-form. Just as for ordinary Poisson structures, these “twisted” Poisson structures are conveniently described as Dirac structures in suitable Courant algebroids. The additive group of 2-forms acts on twisted Poisson structures and permits them to be seen as glued from ordinary Poisson structures defined on local patches. We conclude with ...
متن کاملAnchored Vector Bundles and Algebroids
Inspired by recent works of Zang Liu, Alan Weinstein and Ping Xu, we introduce the notions of CC algebroids and non asymmetric Courant algebroids and study these structures. It is shown that CC algebroids of rank greater than 3 are the same as Courant algebroids up to a constant factor, though the definition of CC algebroids is much simpler than that of Courant algebroids,requiring only 2 axiom...
متن کاملCategorified Symplectic Geometry and the String Lie 2-algebra
Multisymplectic geometry is a generalization of symplectic geometry suitable for n-dimensional field theories, in which the nondegenerate 2-form of symplectic geometry is replaced by a nondegenerate (n + 1)-form. The case n = 2 is relevant to string theory: we call this ‘2-plectic geometry.’ Just as the Poisson bracket makes the smooth functions on a symplectic manifold into a Lie algebra, the ...
متن کاملThe graded Jacobi algebras and (co)homology
Jacobi algebroids (i.e. a ‘Jacobi versions’ of Lie algebroids) are studied in the context of graded Jacobi brackets on graded commutative algebras. This unifies varios concepts of graded Lie structures in geometry and physics. A method of describing such structures by classical Lie algebroids via certain gauging (in the spirit of E.Witten’s gauging of exterior derivative) is developed. One cons...
متن کامل